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1 Executive Summary

The use of semiconductors has grown through the years and can be seen
everywhere from computing, networking, and server applications, to mobile,
embedded, consumer, automotive, and industrial design. A key component to
semiconductors development is the use of cluster tools. Cluster tools are systems
used to process microelectronic devices. They are composed of processing modules
and electronic arms that are controlled by a centralized system. The key advantages
of these tools are that they reduce contamination and allow for the processing of
wafers in bulk. The work of the Cluster Tool Modeling Group (CTSG) centers on a
specific cluster tool: the implant tool, with an interest on the effect recipe
sequencing (the way a group of recipes are scheduled for processing) has on the
tool’s ion source.

Implant tool scheduling systems try to process lots (groups of wafers) in the
shortest possible amount of time. However, they often do not take the ion source’s
life into consideration when developing the processing schedules. Instead of
learning from experience, which can be expensive, using a simulation tool could help
the client test recipe schedules before applying them to the real tool. This way the
availability of the implant tool can be extended, thus, resulting in less time spent on
tool maintenance.

In order to approach this problem, the Cluster Tool Analysis Group applied systems
engineering methods to model the ion implantation process for an implant tool with
ion source deterioration. Different scheduling algorithms were tested in the model
of the implant tool in order to simulate the implant process and its effect on the life
of the ion source. This was done to demonstrate the usefulness of the model.

The project initially included the identification of recipe sequences to extend the life
of the ion source. However, this objective was removed due to lack of data for
analysis, and a tight schedule for project completion after Micron, our previous
sponsor, decided not to continue with this project. There were key road blocks
encountered in obtaining data as our initial project sponsor, could not provide the
data because it was considered too sensitive to be provided to external users.
Therefore, our new client, Systems Architectures Laboratory (SAL) at George Mason
University requested that develop a simulation model that is generic enough to
allow users to input their own data.

Our recommendations are intended to be implemented with minimal effort or
future assistance by any entity using implant tools for processing wafers. Our
identification and implementation of the appropriate systems engineering processes
can also be easily replicated and re-usable. Furthermore, the model can be modified
to simulate other processing tools.



2 Sponsor

Our initial sponsor was Micron Technology. However, we had to change our client
because the legal procedures needed for them to provide us with data would take
too long to allow us to complete the project on time. As a result, the Systems
Architectures Laboratory (SAL) at George Mason University offered to be our client.
SAL conducts research in the modeling, design and evaluation of architectures for
information systems, and they are currently working with Micron Technologies on
cluster tool modeling research, which closely relates to our project.

3 Problem Definition

3.1 Background

Cluster tools are systems used in the semiconductor processing industry to fabricate
microelectronic devices and components. One of the advantages of cluster tools is
that they can perform processes in sequences to improve product yield.
Furthermore, they reduce contamination, which is very important in the processing
of semiconductors. All semiconductor processes depend on these tools to process
wafers in their respective areas.

One such cluster tool, known as an implant tool, was the object of interest for this
project. Implant tools are composed of several hardware components with the main
internal component being the ion source. The ion source is composed of two main
parts: a cathode and a filament. The filament heats up the cathode, which in turn
interacts with the gas flow; thus, creating a plasma. The plasma is then guided
through magnets, acting as ion filters, and is then accelerated to implant the filtered
ions onto the surface of the wafers.

In the implant process, wafers are bombarded with ions from different elements -
called dopants - such as, Boron (B), Phosphorous (P), Arsenic (Ar), Carbon (C), and
Germanium (Ge) into and on top of a wafer in order to modify its conductivity. The
specific format used to implant these elements is known as the implantation recipe.
The recipe contains information, such as the amounts of gases, pressure,
temperature, and current needed for the implantation process.

The implantation recipe is critical in helping to optimize the throughput of implant
tools, which is an activity of great interest today with the continuously decreasing
size of semiconductors. One method in particular that is used to improve product
yield is Recipe Sequencing. This method can reduce the tool preparation time
between different implantation recipes by organizing the recipes in sequences,
where the wafer batches are scheduled to be processed depending on the
implantation recipe they require, instead of on a first come, first serve basis.



3.2 Problem statement (SOW)

In implant tools, the interactions between the gases, the heated cathode and
filament, and the plasma, affect the thickness of the source’s cathode. Certain gases,
such as Boron (B), deposit or grow layers of substances on the surface of the
cathode; other gases, such as Arsenic (Ar), Phosphorous (P), Carbon (C), and
Germanium (Ge), tend to erode the surface of the cathode, making it thinner. Thus,
running a process with the same element for too long may lead to early failure of the
ion source.

If the cathode of the source component becomes too thin, the plasma may have
direct contact with the source’s filament, leading to source failure. Similarly, if
there is too much build up on the surface of the source’s cathode, the uniformity of
the ion beam is deteriorated, leading to defects on the implanted wafer. In either
situation, the source needs to be replaced, which can result in hours of lost
productivity.

Current recipe sequencing doesn’t take source deterioration into account, which
results in frequent source changes and a potentially less than optimal throughput.
Therefore, the deterioration of the ion source should be taken into consideration
when organizing recipe sequences for the implantation tool. If tool availability
could be extended by modifying recipe schedules, unnecessary delays could be
prevented, and the throughput of the implant tool may be improved.

3.3 Scope
The Cluster Tool Simulation Group was asked to model the behavior of one implant
tool to simulate the implant process for different recipe sequences with

deterioration. The development of our simulation tool focused on two areas:

- The effect of different recipe sequences on time to completion for lot processing
- The effect of different recipe sequences on the life of the ion source.

3.4 Objectives
The expected outcomes of this project were the:
i.  Application of a systems engineering approach for cluster tool modeling.

ii. Development of a model that can simulate an implant tool with ion source
deterioration.



3.5 Success Criteria

CTSG considered the project to be successful when objectives i, and ii had been
achieved and the simulation tool had been validated (the tool was proved to behave
like a real implant tool).

4 Requirements

4.1 Project Requirements

1) CTSG shall use UML to model the external operation of an implant tool.

2) CTSG shall develop scheduling systems to test in the simulation tool.

3) CTSG shall model the ion source deterioration effects as random
distributions.

4) CTSG shall use Colored Petri Nets (CPN) to develop an executable model to
simulate the implant process with deterioration of the ion source.

5) CTSG shall demonstrate the use of the simulation tool with the developed
scheduling systems.

6) CTSG shall provide recommendations to the client about the use of the tool.

7) CTSG shall produce a final report to be presented to stakeholders on
December 7th 2012.

8) CTSG shall develop a website containing all documentation for this project.

4.2 Functional Requirements

1) The simulation tool shall allow the user to input recipe information through a
text file.

2) The simulation tool shall allow the user to change the ion source
deterioration effects.

3) The simulation tool shall keep track of the setup time of lots processed.

4) The simulation tool shall keep track of the recipe times of the lots processed.

5) The simulation tool shall keep track of the total processing time.

6) The simulation tool shall keep track of the number of source changes during
arun.

7) The simulation tool shall keep track of the number of lots processed during a
run.

8) The simulation tool shall keep track of the number of lots that were not
processed during a run due to source failure.

9) The simulation tool shall keep track of the life of the ion source as lots are
processed.

10)The simulation tool shall keep track of the sequence of lots provided by the
user.



11)The simulation tool shall warn the user if the sequence provided was not
completed due to ion source failure.

12) The simulation tool shall return an output report with ion source status, # of
lots processed, # of lots unprocessed, # of source changes, and warnings.

5 Approach

5.1 Overview

The Cluster Tool Simulation Group (CTSG)’s approach was to develop a simulation
tool to allow users to test different schedules for recipe sequencing before they are
implemented in a real implant tool. This way, users can get an estimate of when the
ion source will fail or if it will fail before they have completed a sequence of lots. As
a result, the simulation tool may allow users to identify whether there’s a need for
improvement in their scheduling methods.

The simulation tool was designed to read recipe information, lot information and
ion source deterioration data from a text file, and to use this information to simulate
the implantation process for given recipe sequences (from a scheduling algorithm).
The tool was also designed to return a simulation report containing the status of the
ion source’s life, the total processing time for the given recipe sequence, and a
warning if the ion source failed before the sequence was completed.

CTSG also developed scheduling algorithms to validate that the model behaves like a
real implant tool and to perform a sample analysis of scheduling systems for
scheduling improvement. The purpose of the sample analysis was to demonstrate
the usefulness of the simulation model.

The process for the simulation is depicted in figure 4.1. The scheduling system
generates a recipe sequence to be tested in the simulation model. The simulation
model takes an input file and the recipe sequence as inputs, and returns an output
report.

Input File

i Output Report
Scheduling System 47/ Recipe P Simulation Model > B i
Sequence

Figure 5.1: Approach flow.
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5.2 Simulation Model

In order to develop an executable model that simulates the Implant tool in a correct
manner, a systems architecture development methodology (SADM) was considered
necessary. This methodology guaranteed the development of a system, an
executable model in this case, that was responsive to customer’s needs.

For this project we used Unified Modeling Language (UML) for the architecture
viewpoint diagrams needed to create our executable model. Furthermore, we chose
Colored Petri Nets (CPN) to develop our executable model because this tool
supports UML and is greatly used in the cluster tool literature.

Colored Petri Net (CPN) is a graphical tool used to construct models and analyze
system properties. CPNs allow for the creation of executable models that help
describe system processes and capabilities, while validating behavior predictions.
Furthermore, CPNs allow for the analysis of mathematical models of the physical
systems themselves through their state space analysis capabilities.

In summary the reasons and benefits of using UML and CPN are as follows:
a) The existence of a methodology for converting UML class diagrams into CPN
models
b) CPN’s highly visual development that aids in the understanding of model
operation
c) CPN’s powerful analytic capabilities such as state space analysis
d) UML and CPN’s compatibility with windows operating systems

UNIFIED o -
MODELING — @w Tools

LANGUAGE ~

Figure 4.2: DODAF-CPN Transformation Process

5.3 Scheduling System

In order to improve the throughput of their implant tools, companies often schedule
their recipe sequences to process lots in the shortest possible amount of time. This
process is done with a scheduling system.

CTSG initially chose to perform a state space analysis to find the shortest recipe
sequence for simulation in our implant model. In state space analysis, the
simulation tool goes through every possible combination of recipes and stores them
in different states, creating branches for all the possibilities. Then by running a
search for the ending branches of the state space tree, the different states where all



the recipe lots have been processed can be searched until the sequence that gives
the shortest processing time has been found.

One major issue with state space analysis is that it needs to go through every
possible state for a sequence of recipe lots. As the sequence grows, the tree grows
immensely, making the running process very slow. We found that the running time
for state space analysis was reasonable for sequences up to 8 recipes long. For
longer sequences, it could take hours for the state space tree to be created.

As a result, we looked for a faster tool to create the recipe sequences to test in our
simulation tool. We chose to develop three types of scheduling algorithms in C. The
first algorithm goes through all possible combinations of the recipe sequence, which
is similar to state space analysis. However, this algorithm doesn’t create a state
space tree. As a result it is much faster than state space analysis. The second and
third algorithms are versions of greedy algorithms.

A greedy algorithm is a mathematical process that works to find good solutions to
difficult optimization problems in reasonable amounts of time. The process focuses
on incrementally finding an approximate (good) solution by making myopic
decisions, i.e, making an optimal decision at a given phase, ignoring the
consequences of that decision on future decisions.

5.4 Approach Execution

Once a recipe sequence was obtained through the scheduling algorithms, the recipe
sequence was tested in the Colored Petri Net model to check if it would be
completed successfully or if the ion source would die before all the recipes in the
sequence were processed. The results obtained with the three different algorithms
were compared in a sample trade-off analysis of processing time and ion source life
to demonstrate the usefulness of the tool.

5.5 Use Case

The following is the use case for the main success scenario of our implant simulation
tool. The use case describes the steps followed when executing a simulation run.

5.5.1 Characteristic Information
The following defines information that pertains to this particular use case.

Goal In Context: To simulate the implant process for a train (group) of
lots

Scope: Simulation Tool

Level: Task

Pre-Condition: Train of lots has arrived at the implant tool



Success End
Condition:

Minimal Guarantees:

Primary Actor:

Trigger Event:

Simulation has ended and a report is returned

Simulation runs, but doesn’t give an output report

User

User provides an input file

5.5.2 Main Success Scenario
This Scenario describes the steps that are taken from trigger event to goal
completion when everything works without failure.

Step
1
2

o Ul B~ W

6 Project Plan

Actor

User
User

User

Model
Model
Model

6.1 Deliverables

The following table contains a list of the deliverables for this project and their due

dates.

Action Description

Provides an input file with recipe information and lot

information

Provides a recipe sequence to simulate

Runs the simulation model

Reads input file

Processes lots and keeps track of ion source life

Creates a output report with #of lots processed, #of lots
unprocessed, ion source status, warnings if any, and #of

ion source changes

Table 5.1: Project Deliverables

Date Deliverable

9/6/12 Problem Definition Presentation
9/13/12 Project Proposal Presentation
9/27/12 In-Progress Report 1 Document & Presentation
9/28/12 | Monthly informal Progress Report for Sponsor
10/11/12 In-Progress Report 2 Document & Presentation
10/18/12 In-Progress Review Presentation
10/26/12 | Monthly Informal Progress Report with Sponsor
11/1/12 Draft of Final Presentation
11/15/12 Draft of Final Presentation and Final Report
11/29/12 Dry Run of Final Presentation
11/29/12 Final Report Document
11/30/12 | Monthly Informal Progress report with Sponsor
12/7/12 Final Presentation




6.2 Work Breakdown Structure

The following table contains the breakdown of the tasks required to complete this
project.
Table 6.2: WBS

gz:\lggr Task Name

1 Cluster Tool Simulation Project

1.1 Initiation

1.1.1 Project Team Kickoff Meeting

1.1.2 Define Problem and Goals

1.1.3 Conduct Preliminary Research

1.2 Planning

1.2.1 Allocate Tasks to Project Team

1.2.2 Write Proposal

123 Deliverable 1 Submit Proposal to
Sponsor

124 Deliverable 2: Submit Proposal to
Dr. Hoffman

1.2.5 Project Sponsor Reviews Proposal

1.2.6 Project Proposal Signed/Approved

127 Resear'ch Architecturc? Framework,
Modeling and Analysis tools

1.3 Project Management

131 Create Schedule

1.3.2 Allocate Tasks to Project Team

133 Create and Update Project Plan

1.3.4 Internal Project Status Meetings

1.3.5 External Project Status Meetings

1.3.6 In- Progress Reports

14 Execution

1.4.1 Project Kickoff Meeting

1.4.2 Verify & Validate User Requirements

143 Develop Simulation Model

1.43.1 Design Architecture Viewpoints

1.43.2 Create CPN Model

1433 Update Architecture Viewpoints

1434 Update CPN Model

1.4.4 Develop Scheduling System

1.4.4.1 Perform State Space Analysis

1.4.4.2 Develop Scheduling Algorithms

1.4.4.3 Test and debug Algorithms

1.4.4.4 Perform Validation Testing



1.4.45
1.4.4.6
1.4.5

1.4.6
1.4.7
1.4.8
1.5

1.5.1

1.5.2
1.5.3

Perform Scheduling Analysis

Provide Recommendations
Create and Update Project Website

Deliverable 3: Submit Draft of Final
Report

Update Final Report & Presentation

Deliverable 4: Give Dry-Run of Final
Presentation

Closeout

Deliverable 5: Submit Final Report to
Dr. Hoffiman

Deliverable 6: Submit Final Report to
Sponsor

Deliverable 7: Give Final Presentation



6.3 Schedule

The following figure contains our project schedule.

<@
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Outline Task Name Start Finish Aug 19, '12 Sep9,'12 Sep30,'12 |Oct21,'12 ; Nov 11, '12 . Dec2,'12
Number 9 | 17 | 25 | 2 [ 10 | 18 | 26 | 4 | 12 | 20 | 28 | s | 13 [ 2 | 29 | 7
1 Cluster Tool Simulation Project Thu 8/30/12  Fri 12/7/12
1.1 Initiation Thu 8/30/12  Wed 9/5/12
1.2 Planning Thu 9/6/12  Tue 9/18/12 —
1.3 Project Management Thu 9/6/12  Thu 12/6/12
14 Execution Tue 9/18/12  Fri 11/30/12 . ___4
14.1 Project Kickoff' Meeting Mon 9/17/12 Mon 9/17/12 * 917
142 Verify & Validate User Mon 9/17/12  Thu 9/20/12 -
Requirements
143 Develop Simulation Model Mon 9/17/12 Fri11/9/12 R
1431 Design Architecture Viewpoints ~ Mon 9/17/12  Fri 10/5/12
1432 Create CPN Model Fri 10/5/12  Tue 10/23/12 m
1433 Update Architecture Viewpoints  Mon 10/8/12  Fri 10/26/12 ]
1434 Update CPN Model Wed 10/24/12 Fri 11/9/12 —
144 Develop Scheduling System Mon 10/8/12 Tue 11/27/12
1.4.4.1 Perform State Space Analysis Mon 10/8/12 Tue 10/16/12 ——
1.4.4.2 Develop Scheduling Algorithms ~ Tue 10/16/12 Tue 10/30/12 1
1443 Test and debug Algorithms Tue 10/30/12 Fri11/9/12
1.4.4.4 Perform Validation Testing Mon 11/12/1 Fri 11/16/12 _1
1.4.4.5 Perform Scheduling Analysis ~ Mon 11/19/1 Fri 11/23/12 —
1.4.4.6 Provide Recommendations Mon 11/26/1 Tue 11/27/12 %
145 Create and Update Project Website  Mon 10/29/12 Fri 11/30/12
1.4.6 Deliverable 3: Submit Draft of Final Thu 11/1/12 Thu 11/1/12 e 111
Report
147 Update Final Report & Presentation  Mon 11/26/12 Wed 11/28/12 L)
148 Deliverable 4: Give Dry-Run of Thu 11/29/12 Thu 11/29/12 s
Final Presentation
15 Closeout Thu 11/29/12 Fri 12/7/12 —
1.5.1 Deliverable 5: Submit Final Report  Thu 11/29/12 Thu 11/29/12 * 11/29
to Dr. Hoffman
15.2 Deliverable 6: Submit Final Report Fri 11/30/12  Fri 11/30/12 ¢ 11/30
to Sponsor
153 Deliverable 7: Give Final Fri 12/7/12  Fri 12/7/12 * 12/7
Presentation

Figure 6.3: Project Schedule



7 Design

7.1 Simulation Model

Unified Modeling Language (UML) was used to develop three key view point
diagrams for the development of the simulation model. The three types of object
oriented diagrams created were a Class Diagram, an Activity Diagram, and a State
Transition Diagram.

The first step in developing the simulation tool was to develop a Class Diagram
(Figure 6.1a). The Class Diagram helps to identify the components that the
simulation tool should have. Additionally, it gives an idea of the basic relationships
between components.

class Class Diagram /

UnprocessedLot Sourcelnfo
LotlD + InitLife
+ WaferNo
I T
| |
| |
| |
| |
I Implant Tool l
mplant Too! lon S
Lot Train ! P ! o
p— Processes + ToollD Uses + LifeStatus
+ WaferNo 1.* 1 L b
- + Dispatch Lots{) + Recipe Set Up()
+ ProcessLots()

1

Sequencelnfo

+ NextRecipe

1.°

Recipe Sequence

+ Sequence

Figure 6.1a: Class Diagram

The classes for the simulation tool are: Lot Train, Implant Tool, Ion Source, and
Recipe Sequence. “Lot Train” only holds information; therefore, it does not have any
operations. It contains information on the ID number for the lots and the number of
wafers in each lot. Similarly, “Recipe Sequence” does not have any operation either.




This class contains information on the lot processing sequence. The class “Implant
Tool” holds information and performs operations. It contains information about the
tool ID and performs two operations: it dispatches and processes lots. Lastly, the
class “lon Source” holds information and performs one operation. This class
contains information on the status of the source, and it sets up the recipes for the
implantation.

All of these classes are related by association classes that act as packets of
information that are passed among components. This is a basic form of modeling
how the components interact with one another. We can interpret the class diagram
as follows: classes “Lot Train,” “Ion Source,” and “Recipe Sequence” pass or send the
packets “Unprocessed Lot,” “Sequence Info,” and Source Info” to class “Implant
Tool.” This information is used by class “Implant Tool” to process the next lot and
dispatch it.



The next step in the development of the CPN simulation tool was to develop an
Activity Diagram. This was done in order to model the behavior that the CPN
simulation model should follow. The Activity Diagram is shown on figure 6.1c.

ct Implant Tool /

Receive New
Lot

Read Input
File

Implant Lot

Is Implant
Complete

Has Source
Failed

Change Source

Figure 6.1c: Activity Diagram

The first activity that the simulation tool performs is to read the input file. Then it
checks to see if it already has an unprocessed lot that is ready to be processed. If the
tool has an unprocessed lot, it proceeds to the next step. If it does not, the tool gets a
new unprocessed lot. Next, the tool checks to see if the recipe set-up is ready. If that
is the case, the tool starts the implantation. If the set-up has not been done, the tool
initiates the set-up. After implantation, the tool checks if the implantation has been
completed. If it has, the tool dispatches the lot. If the implantation was not
completed, the tool checks if there was a source failure. After the tool has checked
for a source failure, it can go back to implantation, or it can perform a source change,
depending on the outcome of the check. This diagram helps identify the behavior of
the simulation tool.




Finally, a State Transition Diagram was developed in order to establish the main
capabilities for the CPN model. The State Transition Diagram is depicted on Figure
6.1b.

stm State Transition 2 /

Changing

Read Input File Receive New Lot

Recipe Set
Up

Implant
Processing

|

/ Dispatch Lot

Figure 6.1b: State Transition Diagram

The State Transition Diagram depicts the states that the implant tool can be in
during operations. The first state is the idle state. This state occurs when the tool is
ON, but it is not processing any lots. From idle the tool can go to the state Read
Input File. This occurs when the tool is populating all its variables from a user
defined input text file. From here, the tool goes to the Receive New Lot state. The
tool is in this state when it is waiting for the next lot for implantation. Next, the tool
goes into the Recipe Set-Up state. During this state, the lon Source is generating the
desired plasma, specified by the lot recipe. Additionally, the tool cannot do anything
else when it is in the set-up state. Once the set-up is ready, the tool goes into the
Implantation state. This is the state the tool is in when it is processing a lot. After
implantation, the tool can go to Dispatch Lot or to Change Source (maintenance),
depending on the state of the source. When the tool is in the Changing Source state,
it can go to the Idle state if there are no more lots to be processed or to the Receive
New Lot state, where the whole process is repeated. Finally, when the tool is in the
Dispatch Lot state, it can go to the Idle state if there are no more lots to be
processed, the Receive New Lot state, or Recipe Set Up state.

The three diagrams discussed above, when put together, provide a complete picture
of how the CPN simulation tool should operate in order to emulate operations of a
real Implant Tool. The model we created by combining the Class Diagram, Activity
Diagram, State Transition Diagram with Colored Petri Nets is shown in figures 6.1d.
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Figure 6.1d: CPN Implant Simulation Model

The CPN model shown on Figure 6.1d contains the classes, activities, and states from
the three UML diagrams discussed above.




7.2 Scheduling System

Originally, Micron Technologies, our previous sponsor was going to provide us with
scheduling algorithms to test in our tool. However, due to the proprietary nature of
this information, and as a result the change of sponsor, we had to develop our own
algorithms to test our tool. It is important to note that the development of the
scheduling algorithms was just for the demonstration of our simulation tool. The
algorithms were not the main focus of this project.

CTSG used C to develop the scheduling algorithms. We developed three different
scheduling algorithms to find recipe sequences with different processing times. The
purpose of the three scheduling algorithms is to compare them after simulation to
demonstrate how the simulation tool can be used to evaluate scheduling techniques
based on processing time and ion source deterioration.

The first scheduling algorithm searches for the different kinds of recipes that need
to be organized (without repetitions). Then, it organizes these recipes by going
through all their permutations, until the sequence with the shortest processing time
has been found. Once the shortest permutation has been found, the algorithm
concatenates the repetitions of each recipe at the end of their original recipe, so that
the bigger sequence is also the shortest permutation to process in the implant tool.
The way this algorithm works is by taking a big problem, breaking it down into a
smaller problem that is easier to solve, and then applying the solution of the smaller
problem to the big problem. This way, the algorithm can run much faster than if it
had to go through all the permutations of the longer recipe sequence, which could
take several hours to complete. The flow chart for the first scheduling algorithm is
shown on figure 7.2a
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Figure 7.2a: Algorithm 1



Our second scheduling algorithm is a greedy algorithm that continuously picks the
recipe with the shortest processing time (with set-up times included) until all
recipes have been picked. This way, the sequence is organized from smallest to
largest. The flow chart for this algorithm is shown in figure 7.2b.
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Figure 7.2b: Algorithm 2

The third scheduling algorithm is a greedy algorithm that picks the longest jobs that
need to be processed and organizes the sequence from largest to smallest. The flow
chart for this algorithm is shown in figure 7.2c.
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Figure 7.2c: Algorithm 3

The algorithms were created with 5 different recipes types (A,B,C,D,E), each of which
has processing times associated with it. Furthermore, there is a set-up time for the
implant tool in between different recipes, which is the time that the implant tool spends
on preparing the gases, temperature, pressure, etc for recipe changes. While some
recipes have symmetrical set-up times i.e., it takes the same amount of time to go from
recipe A to recipe B or recipe B to recipe A (A->B = B->A), not all times are symmetric.
Therefore, we allowed for asymmetric set-up times in our scheduling algorithms.
This lets us explore more recipe combinations that result in different deterioration
amounts on the life of the ion source.

8 Testing

8.1 Assumptions and Limitations
In order to simplify the model to meet time constraints, assumptions were made
regarding the arrival of lots at the implant tool, the delays between recipes, and the
deterioration effects on the ion source.



The first assumption relates to the availability time of lots (lot train) that need
processing. In reality, lots become available at different times. Semiconductor
processing companies, such as Micron, use a scheduling system that knows when the
unprocessed lots will be available, and produces a schedule for the Implant tool based
on that. For the analysis CTSG is doing to demonstrate the usefulness of the tool, we are
assuming that all unprocessed lots are available at time zero, thereby allowing us to
generate all possible processing order scenarios with our scheduling algorithms.

The second assumption relates to the time delay between lots. We assumed each lot is
processed immediately after the previous lot has been processed and that any
necessary ion source set-up has occurred; no delays are allowed.

The third assumption relates to the ion source deterioration. We assumed, for
demonstration purposes, that the deterioration effect of each recipe is normally
distributed with some arbitrary mean and variance as we don’t have this data.
However, users may change the deterioration effects to test scheduling techniques with
the effects of their own recipes. This could be done through the use of random variables
or deterministic numbers obtain from data.

8.2 Validation Testing

In order to validate that our simulation model correctly models an implant tool, we
asked the Systems Architectures Lab (SAL) to run a set of recipe sequences with the
same parameters we used in our simulation model. Since, we don’t have an implant
tool to test our model against; our sponsor’s model is the closest thing to an implant
tool that we can use since it has been proved to be an accurate model by Micron
Technology, our previous client.

It should be noted that the validation testing was done without the source
deterioration effects because our effects were chosen arbitrarily for demonstration
purposes. The effects need to be known by the user in order to use them in the
simulation model. Furthermore, testing the results would require us to run the
recipes in a real implant tool, which is beyond the scope of this project.

Note: The recipe times, set-up times, and deterioration effects for testing and for
the trade-off analysis were chosen arbitrarily. However, the client can input their
own data for these parameters to simulate their own implant processes.

8.3 Validation Results

The validation testing showed that both SAL’s implant model and our simulation
model produce the same results, with the same input parameters. Unfortunately,
due to confidentiality issues, this data cannot be shared. However, the results prove
that the simulation model correctly resembles the behavior of an implant tool. The
results can be verified with our sponsor.



9 Analysis

9.1 Scheduling Trade-off Analysis

The purpose of this analysis is to show the benefits and the types of analysis that
can be performed with our simulation model; it is a proof-of-concept (POC). In this
analysis a trade-off study was performed in order to show that the implant tool can
be used to evaluate recipe sequences based on total processing time and ion source
deterioration.

For this analysis, CTSG evaluated the three basic scheduling algorithms presented in
section 7.2. These algorithms provided sequences with different total processing
times, which were then compared in the simulation tool.

9.2 Results

Thirty sequences were created for the three scheduling algorithms to organize.
Each sequence contained a number of unprocessed lots associated with particular
recipes (A, B, C, D, or E).

Table 9.2.1, on the next page, contains the sequence number along with the number
of lots each sequence contains. Additionally, it contains the original sequence,
which was obtained by using a random selector, and the organized sequences
obtained through the three scheduling algorithms: shortest greedy and longest
greedy, and the permutation algorithm.



Table 9.2.1: Recipe Sequences
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Table 9.2.1 contains three sample sequences that were reorganized by the different
scheduling algorithms. For the full set of sequences, see the embedded spreadsheet
from Appendix D.



The input data used in the input file for the simulation model is presented in tables
9.2.2 - 9.2.5 below.

Table 9.2.2: Process Times

Recipe Time (min)

A 44
B 63
C 11
D 27
E 10

Table 9.2.2 contains the processing time for each recipe.

Table 9.2.3: Set-up times in minutes

Table 9.2.3 contains the set-up times between recipes. This table is read by looking
at the row for the old recipe (i), and then the column for the new recipe (j). For
example, the set-up time of going from recipe A to recipe A is 0, and the set-up time
of going from recipe A to recipe B is 10 minutes.



Table 9.2.4: Deterioration Data

Recipe Mean  Variance

A 10 3
B 30 9
C 15 4
D 30 8
E 20 6

The deterioration data (mean and variance) used to model the deterioration effects
of each recipe as a normal distribution is presented in table 9.2.4.

Table 9.2.5: Source Data

Initial Source State Source Change time (min)

1000 180

Table 9.2.5 contains the data related to the ion source: the initial state of a new
source that has never been used before, and the amount of time it takes to change
the ion source when it fails.

Each recipe sequence was run multiple times to sample the life of the ion source,
which is affected by random deterioration. Then, the average of the source life at
the end of a train run (group of lots) was calculated. The processing time for each
sequence of recipes, the average remaining source life, and the average number of
source changes are presented in table 9.2.6 on the next page.



Table 9.2.6: Simulation Results from the sequence runs.

Shortest Greedy Longest Greedy Permutation Algorithm
Total . .| Source|  Total - Total "
Processing Remalmflg Change| Processing Remalmpg o Processing Remamlpg P
. |Source Life ) . |Source Life| Changes . [Source Life| Changes
Time (min) 5 Time (min) Time (min)

4564 122 2 5600 122 2 4559 122 2
3791 102 2 4456 102 0 3786 102 2
3217 100 2 3984 100 2 3212 100 2
3622 103 2 4578 103 2 3617 103 2
3761 111 2 4742 111 2 3759 111 2
3526 108 2 4440 108 2 3521 108 2
3617 109 0 4655 109 0 3612 109 2
3743 108 2 4712 108 2 3738 108 2
4096 112 2 5029 112 2 4091 112 2
4162 108 2 4983 108 2 4157 108 2
5406 156 3 6886 156 3 5401 156 3
5803 164 3 7262 164 3 5798 164 3
6599 172 3 8094 172 3 6594 172 3
5995 167 3 7680 167 3 5990 167 3
5293 155 3 6404 155 3 5288 155 3
5653 155 3 7004 155 3 5648 155 3
5919 178 3 7525 178 3 5914 178 3
5469 158 3 6888 158 3 5464 158 3
6210 184 3 7949 184 3 6205 184 3
5557 152 3 7088 152 3 5552 152 3
7926 227 4 10063 227 4 7921 227 4
6381 207 4 7943 207 4 6376 207 4
8242 229 4 10360 229 4 8237 229 4
6825 201 4 8685 201 4 6820 201 4
17706 518 10 22550 518 10 17701 518 10
4565 120 2 5784 120 2 4561 120 2
4312 110 2 5452 110 2 4308 110 2
5201 123 2 6028 123 2 5198 123 2
3743 117 2 4784 117 2 3741 117 2
3392 77 1 3836 77 1 3387 77 1

Figure 9.2.1, presented below, shows the average total process time versus the
remaining source life for each recipe sequence, for the three scheduling algorithms.
In this figure, each data point is represented by a diamonds, squares or triangles,
which correspond to the shortest greedy algorithm, longest greedy algorithm, and
the permutation algorithm, respectively. More specifically, each data point
represents a sequence that was run by following one of the three scheduling
algorithms. Furthermore, each data point shows how fast a given sequence was
completed and the remaining source life after the processing was completed. Note
that only 10 sequences were plotted in the figure below to make the plot easier to
read. For a more detail look, please refer to the excel worksheet in appendix D.
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Figure 9.2.1: Processing Time vs. Source Life

In order to take a closer look at the data, we have presented the results for the total
processing time and the remaining life of the ion source in separate plots. Figure
9.2.2 shows the average total processing time for ten of the sequences we ran.
Here, it is evident that the longest greedy sequences have the slowest processing
times. Additionally, we can see that the shortest greedy sequences and the
permutation sequences are very close to each other. However, the permutation
sequence, on average, are faster by five minutes.
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Figure 9.2.2: Total Processing Time

Figure 9.2.3 shows the average remaining life for the last ion source in the implant
tool at the end of the simulation run for the same ten sequences compared above.
Here, in some cases it seems that the longest greedy algorithm has the best ion
source remaining life. However, the higher remaining life is due to additional ion
source changes near the end of the simulation, that is, when the ion source was
changed close to the completion of the simulation run. For a closer comparison of
the data, we calculated the average of all the runs, which are presented on table
9.2.7.
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Table 9.2.7: Average Results

Longest Greedy 4869.1 602.92 2.83
Shortest Greedy 3809.9 674.45 2
Permutation 3804.9 676.08 2

Table 9.2.7 contains the average total processing time as well as the average
remaining source life for the ten sequences compared earlier Here it is clear that
the longest greedy sequences have the poorest performance. They have the longest
total processing times, as well as the lowest remaining source life due to the
additional ion source changes. Furthermore, we can see that the results for the
shortest greedy and the permutation sequences were very close to each other. This
is because both schedules try to minimize the set-up times in between recipes. As a
result, the permutation sequences, which have the smallest total set-up times, have
the best results both for fastest total processing time, as well as for the highest
average ion source remaining life.



From these results we can see that the longest greedy schedules had the greatest
effect on the deterioration of the ion source because of their long set-up times, while
the other two algorithms helped decrease ion source deterioration by decreasing
the set-up times.

It must be emphasized that this is only a proof of concept analysis; therefore, we are
not making any recommendations as to which scheduling algorithm to use. Instead,
we are providing a tool that will return data to help planning or scheduling
engineers improve their schedules.

9.3 Recommendations

The simulation model that CTSG has developed is a powerful analysis tool that can
be used for many purposes. Our model can be used to test different scheduling
techniques or methodologies before implementation. This will allow scheduling or
planning engineers to show the benefits of a proposed technique to management
without the potential dangers of experimental testing.

The tool can also be used to identify whether the scheduling system that is currently
in use needs improvements. The areas where improvements are needed can be
identified from analysis of simulation results.

Additionally, this tool can be used to study any scheduling process that is affected by
constraints. One good example is process chambers that need to be maintained after
a certain period of time. The tool would provide insight into how to schedule the
work to a process chamber and when to perform the necessary maintenance work.

9.4 Future Work

CTSG’s simulation tool can be modified to study more than one tool or machine
concurrently. For example, the tool can be expanded to study the scheduling of a
group of implant tools (known as a workstation). In the case of implant tools, this
type of study would prove beneficial by showing the time savings from a particular
scheduling logic that could translate into cost savings. It can also be modified to
study other kinds of cluster tools or to analyze multiple failures.

As a matter of possible future expansions, it may be possible to include
deterioration and time into a combined metric and to develop more advanced
scheduling algorithms to test in the simulation tool. For example, the Permutation
algorithm may be modified by splitting repetitions based on deterioration metrics,
in order to further extend the ion source’s life. Although, this will increase
processing time as was indicated by our sample analysis. The development and



analysis of this modified Permutation algorithm with the tool we have developed
could be a possible capstone project for future classes.
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